General classes of performance lower bounds for parameter estimation: part II: Bayesian bounds
نویسندگان
چکیده
In this paper, a new class of Bayesian lower bounds is proposed. Derivation of the proposed class is performed via projection of each entry of the vector-function to be estimated on a closed Hilbert subspace of L2. This Hilbert subspace contains linear transformations of elements in the domain of an integral transform, applied on functions used for computation of bounds in the Weiss-Weinstein class. The integral transform generalizes the traditional derivative and sampling operators, used for computation of existing performance lower bounds, such as the Bayesian Cramér-Rao, Bayesian Bhattacharyya and Weiss-Weinstein bounds. It is shown that some well known Bayesian lower bounds can be derived from the proposed class by specific choice of the integral transform kernel. A new lower bound is derived from the proposed class using the Fourier transform kernel. The proposed bound is compared with other existing bounds in term of signal-to-noise ratio (SNR) threshold region prediction, in the problem of frequency estimation. The bound is shown to be computationally manageable and provides better prediction of the SNR threshold region, exhibited by the maximum a-posteriori probability (MAP) and minimum-mean-square-error (MMSE) estimators.
منابع مشابه
Classes of lower bounds on outage error probability and MSE in Bayesian parameter estimation
In this paper, new classes of lower bounds on the outage error probability and on the mean-square-error (MSE) in Bayesian parameter estimation are proposed. The minima of the h-outage error probability and the MSE are obtained by the generalized maximum a-posteriori probability and the minimum MSE (MMSE) estimators, respectively. However, computation of these estimators and their corresponding ...
متن کاملBayesian Two-Sample Prediction with Progressively Type-II Censored Data for Some Lifetime Models
Prediction on the basis of censored data is very important topic in many fields including medical and engineering sciences. In this paper, based on progressive Type-II right censoring scheme, we will discuss Bayesian two-sample prediction. A general form for lifetime model including some well known and useful models such asWeibull and Pareto is considered for obtaining prediction bounds ...
متن کاملExact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean
A Poisson distribution is well used as a standard model for analyzing count data. So the Poisson distribution parameter estimation is widely applied in practice. Providing accurate confidence intervals for the discrete distribution parameters is very difficult. So far, many asymptotic confidence intervals for the mean of Poisson distribution is provided. It is known that the coverag...
متن کاملComparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches
This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 56 شماره
صفحات -
تاریخ انتشار 2010